A methodical breakthrough in supermagnetics

*Now that's Big Science. You got a new material, nobody knows how to make it work, you just hammer it into submission, for years and years. Then one day it functions. Repeatedly.

*Now that they've got the principles hacked, it looks like they could inch up to a hundred Tesla with the same principles, which is unheard-of in magnet-land.

Thirty-two Tesla. That's a lot

(...)

Made of a combination of conventional low-temperature and novel high-temperature superconductors, the "32 T" will allow physicists studying materials to explore how electrons interact with each other and their atomic environment, enabling new devices that will shape our world.

For decades, the world record for a superconducting magnet has inched forward incrementally. This single leap is bigger than all the improvements made over the past 40 years combined.

"This is a transformational step in magnet technology, a true revolution in the making," said MagLab Director Greg Boebinger. "Not only will this state-of-the-art magnet design allow us to offer new experimental techniques here at the lab, but it will boost the power of other scientific tools such as X-rays and neutron scattering around the world."

It has been a remarkable year for the MagLab, noted Boebinger: The 32 T is the third world-record magnet tested in the past 13 months, following a 41.4-tesla resistive magnet tested last summer and the 36-tesla Series Connected Hybrid magnet that reached full field in November 2016.

"We're on a roll," Boebinger said.

The new magnet represents a milestone in high-temperature superconductivity, a phenomenon that made a tremendous stir in the science community when it was first discovered 31 years ago....